CDF

Internal Format
Description

Version 3.5, September 25, 2012

Space Physics Data Facility
NASA / Goddard Space Flight Center

Copyright © 2012

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet - cdfsupport@listserv.gsfc.nasa.gov

Contents

1 INEFOAUCTION ceuueeeeeeeneeereeneeereeneeceeeeeeecssssseecsssssssssassasssssssnne 1

s (478 D J (1 (P
2.1 MAZIC INUIMDETS ..ottt ettt et et a et st e e st et s e b e e e et e eas e bt easesaeesnesaeemnesaeensesanenneennennens 6
2.2 CDF DeSCriptOr RECOTAouiiuiiiiiiiiiiiiiieicteeiett ettt sttt et sttt et e ae e st eae st enesanesnesanenees 6
23 GLOBAL DESCRIPTOR RECORD........ccciiitiiiiiiiinietentete sttt ettt e sae e st st saaesneeanenne s 8
24 Attribute Descriptor RECOTA.couiiiiiiiiiiiiiiieieeeee ettt ettt et et ene e s ne e 10
2.5 Attribute Entry Descriptor RECOTA.........couiiiiriiiiiiiieiiiieitciereeest ettt ettt et s 12
2.6 Variable DesCriptor RECOIAc..cocuiiiiiiiiiiiiiiieiieeee ettt ettt et et e ne e ne e 14
2.7 Variable INdeX RECOTAc..coiiiiiiiiiiiieiicieete ettt ettt ettt e s e ne st s beeanene e 17
2.8 Variable Values RECOTAc...ooiiiiiiiiiiiiiiiie ettt ettt et et ne e 19
2.9 Compressed CDEF RECOTAcc.ciiiiiiiiiiiiiiiieieeee ettt ettt ettt et e saeenesae e s besaneneeas 19
2.10 Compressed Parameters RECOIAcoiiiiiiiiiiiiiiiiiiieiiieeceteese ettt et 20
2.11 Sparseness Parameters RECOIU.c..cocuiiiiiiiriiiiiiiiii ittt ettt st 21
2.12 Compressed Variable Values RECOIdcccoooiiiiiiiiiiiiiiiiiicietceeceeet ettt 22
213 Unused Internal RECOIAooiiiiiiiiiiiiiiiiieeee ettt ettt et et nesanene e 22

RIIAYE:1 5 T:11] (S 2 | (PP L
4 Variable RECOTAS .ceeueeeereeneceereeneceeeeeeecerreseescsseseessesssssecsssssssssssssssssssssssssssssssssssess 20

S ENCOAINES..ccciiinrrnrieicsssssanneccsssssssssecssnns 20
5.1 Data REPIESENTATIONSc.eeviiuieiiriiiiieietieteete ettt ettt et sae ettt e e st e e s e et e et e eaeessesaee st esnesaeennesueensesunenneennensenas 29
ST BIES cateiteiieeet ettt bttt h e a e bt bbbt et bt ettt et e e e bt e bt bt bt bt ettt et e nnen 29
512 BYLES coiieiiiiee ettt ettt e h e bbbttt e a et e ae e et eae e sa e ean e sa e e n e heenneeaeenneeanereeas 29
513 INEEERIS ..ttt ettt ettt ettt et et b e ettt h e bt ettt e a et et e et st e sa e ean e sa e e nesheenenhe e eaneneeas 29
5.1.4 FloAtiNG-POINTcoouiiiiiiiiiiiiiieictetet ettt ettt ettt ettt ettt et e st et e sa e eanesaeennesaeennesaeennesanenseeas 30

5.2 Control INOIMAtIONoouiiiiiiiiiiiieieet ettt ettt ettt et ettt et e st e saeenesaee s e sasesneeaneneeas 33
521 INEEZEI VALUESeouiiiiiniiiiieiiciete ettt ettt ettt ettt et et ettt et e et et eae e st e st e sa e e sa e e s e s aeenesae b e sanenreeas 33
5.2.2 Character STINESc..ceoueiieiiieieiieteett et ettet et ete et s e eeee st eae st e ease st e esseeae et e eseesateaeesaeennesaeensesueennesunenseeanensens 33

5.3 APPHCAION DA ...ttt et et et e s ae e sa e s ae e ne e 33

Appendix A 000 36
A.1 Single-Precision Floating-POINtcccciiiiiiiiiiiiieii ettt ettt et ne e ene e 36

Appendix B 000 39
B.1 Double-Precision FIOating-POint........cc.coiiiiiiiiiiiiiiiieiiieeceteese ettt ettt s 39

Preface

This document will present the physical file layout used by the Common Data Format (CDF) for CDF Version 3.2. No
attempt will be made to teach the concepts of CDF. For that please refer to the CDF User's Guide, CDF C Reference
Manual, CDF Fortran Reference Manual and CDF Perl Reference Manual, or the CDF Java APIs online . This
document will assume that you are familiar with rVariables, zVariables, attributes, gEntries, rEntries, zEntries, and all
of the other CDF concepts. Using the contents of this document, you should be able to rewrite the CDF library in your
Spare time.

Chapter 1

1 Introduction

A CDF may have one of two formats: single-file or multi-file. A single-file CDF contains everything in one file having
an extension of .cdf. A multi-file CDF stores everything except variable values in one file (with an extension of .cdf).
The variable values are stored in separate files - one per variable. Variable files are described in Chapter 3. The .cdf
file of a CDF will be referred to as the dotCDF file throughout this document.

The dotCDF file of a CDF contains magic numbers and numerous internal records are used to organize information
about the contents of the CDF (for both single-file and multi-file CDFs). Chapter 2 describes the magic numbers and
the various internal records. The data encodings used by CDF are described in Chapter 5. The file attributes of a
dotCDF or variable file are not an issue on UNIX-based systems, the PC, or the Macintosh! because all files on those
platforms are simply treated as a sequence of bytes. On OpenVMS-based systems, however, file attributes are very
much an issue. The file attributes of a dotCDF or variable file created by the CDF library on an OpenVMS-based
system are as follows:

File organization: Sequential

Record format: Fixed length 512 byte records
Record attributes: None

RMS attributes: None

These are also the file attributes for a file that has been FTPed to an OpenVMS-based system in binary mode. With
these file attributes the CDF library is able to read the file as if it simply consisted of a sequence of bytes. Transferring
a CDF file to an OpenVMS-based systems as a text file will result in a different set of file attributes as well as the
insertion of additional bytes into the file (because the file system thinks there are suppose to be lines of text). CDF files
transferred in this way will not be readable by the CDF library.

CDFs created while running the POSIX Shell on a DEC Alpha (running OpenVMS), however, will have a different set
of file attributes when the POSIX Shell is not being used. These file attributes are:

File organization: Sequential

Record format: Stream LF, maximum 32256 bytes
Record attributes: Carriage return carriage control
RMS attributes: None

A CDF file with these attributes appears to be readable by the CDF library on current versions of OpenVMS for a DEC
Alpha. Some older version of OpenVMS apparently treats these file attributes differently and may cause a problem for
the CDF library.

' On a Macintosh only the data fork of a file is used in a dotCDF or variable file.

Chapter 2

2 dotCDF File

This chapter will describe the contents of the CDF post-V3.0 dotCDF file’. The dotCDF file contains a magic number
and two or more internal records (IRs) that are used to organize the contents of a CDF. Different types of internal
records are used to store information about various aspects and/or objects in the CDF. Each internal record contains
two or more fields. The first field (at internal record offset’ 0x0), referred to as the RecordSize field, is an 8-byte
unsigned integer containing the size of the internal record in bytes. The second field (at internal record offset 0x8),
referred to as the RecordType field, is a 4-byte signed integer containing the type of internal record. Fields from the
third through the last depend on the type of internal record. Each field is stored contiguously, however, and some fields
may not be present in a particular instance of a type of internal record. Note that internal record fields are also referred
to as “internal values.”

Table 2.1 lists the types of internal records, the associated RecordType values, and brief descriptions. Detailed
descriptions are found in the corresponding sections.

All dotCDF files contain a CDF Descriptor Record (CDR) and a Global Descriptor Record (GDR). Other internal
records will be present depending on the contents of the CDF. The CDR is always at file offset*
0x0000000000000008, which immediately follows the magic number(s), described in Section 2.1. The file offset of
the GDR is stored in the CDR.

The only internal record at a fixed location in the dotCDF file is the CDR. All other internal records (including the
GDR) may be present in any order (which generally depends on the order in which the contents of the CDF were
created by an application). File offsets are used to “point" to other internal records. Linked lists of internal records are
implemented by storing the file offset of the first internal record on the linked list, having that internal record store the
file offset of the next internal record on the linked list, and so on. Figure 2.1 shows a possible arrangement of internal
records in an "uncompressed" dotCDF file. Note that the GDR “points" to the first ZVDR that in turn “points" to the
next zZVDR. File offsets as described in the sections to follow are used to implement this linked list. Keep in mind that
this is only an example of how a dotCDF file might be arranged. The internal records shown could be ordered in a
number of different ways depending on how the CDF was written by the application. Figure 2.2 shows a possible
arrangement of internal records in a dotCDF file, which has a variable, compressed. Figure 2.3 shows the file
arrangement of internal records in a fully compressed dotCDF file.

* CDF V3.* file structure is similar to V2.6/2.7. The only differences are the fields for record sizes and offsets. They
are 8-bytes, instead of 4-bytes.

? The offset in (hexadecimal) bytes from the beginning of the internal record.

* The offset in (hexadecimal) bytes from the beginning of the file.

Type of RecordTypeField
Internal Record Internal Value Purpose/Contents
CDR 1 CDF Descriptor Record.
General information about the CDF (see Section 2.2).
GDR 2 Global Descriptor Record.
Additional general information about the CDF (see Section 2.3).
rVDR 3 rVariable Descriptor Record.
Information about an rVariable (see Section 2.6).
ADR 4 Attribute Descriptor Record.
Information about an attribute (see Section 2.4).
AgrEDR 5 Attribute g/rEntry Descriptor Record.
Information about a gEntry or rEntry of an attribute (see Section 2.5).
VXR 6 Variable Index Record.
Indexing information for a variable (see Section 2.7).
VVR 7 Variable Values Record.
One or more variable records (see Section 2.8).
zVDR 8 zVariable Descriptor Record.
Information about a zVariable (see Section 2.6).
AzEDR 9 Attribute zEntry Descriptor Record.
Information about a zEntry of an attribute (see Section 2.5).
CCR 10 Compressed CDF Record.
Information about a compressed CDF/variable (see Section 2.9).
CPR 11 Compression Parameters Record.
Information about the compression used for a CDF/variable (see
Section 2.10).
SPR 12 Sparseness Parameters Record.
Information about the specified sparseness array (see Section 2.11).
CVVR 13 Compressed Variable Values Record.
Information for the compressed CDF/variable (see Section 2.12).
UIR -1 Unused Internal Record.

MD5 Checksum

An internal record not currently being used (see Section 2.13).

Not considered as a CDF Internal Record. This is an optional field,
located at the end of the CDF file, if the MDS5 checksum option is
chosen. This field is 16-byte long, but is not included in the eof field in
GDR, which represents the CDF file size.

Table 2.1: Internal Records

Magic number 1

Magic number 2

CDR

A 4

GDR

\ 4

zVDR

ADR

A

7

VXR

VVR

AzEDR

A

A 4

VVR

AzEDR

Y

zVDR

[]

[]

A

Figure 2.1: Example of an Uncompressed dotCDF File Arrangement

Magic number 1
| Magic number 2
CDR
=
" aDR
=
=1
" ,VDR
= =
=1
ADR -
] =
TVvxr
, = OO
| CVVR
AzEDR "
K=,
"TevvR
AzEDR)
(]
T ,VDR
]
]
T PR

Figure 2.2: Example of a File Arrangement of a dotCDF File with a Compressed Variable

Magic number 1

Magic number 2

CCR

=

CPR

Figure 2.3: Example of a File Arrangement of a Fully Compressed dotCDF File

2.1 Magic Numbers’

CDF Version 3.0, just like V2.6 or 2.7, uses two magic numbers.’ The first one is 0xCDF30001” at the file offset
0x0000000000000000 stored as a 4-byte, unsigned integer with big-endian byte ordering. The second one, another 4-
byte unsigned integer of 0x0000FFFF for a regular CDF file® or 0xCCCC0001 for a compressed CDF file’ at the file
offset 0x0000000000000004, follows it. The first internal record is stored at file offset 0x0000000000000008.

2.2 CDF Descriptor Record

All dotCDF files contain a single CDF Descriptor Record (CDR) at file offset 0x00000008. The CDR contains general
information about the CDF (as does the GDR described in Section 2.3).

The CDR, as shown in Figure 2.4, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this CDR (including this field).

RecordType Signed 4-byte integer, big-endian byte ordering.
The value 1 which identifies this as the CDR.

GDRoffset Signed 8-byte integer, big-endian byte ordering.
The file offset of the GDR. The GDR is described in Section 2.3.

Version Signed 4-byte integer, big-endian byte ordering.

> For older versions, the first magic number is 0x0000FFFF for pre-V2.6 or 0xCDF26002 for V2.6/7. The second
magic number is 0xXO000FFFF for pre-V2.6 or V2.6/7 if uncompressed, or 0xCCCCO0001 for compressed for V2.6/7.
% They don't seem like magic to me but looking at these values is how you would determine the identity of a file.

7 Pre-V2.6, it is 0x0000FFFF.

¥ That means an uncompressed CDF or a CDF with a selected variable(s) compressed

? Compression is not available for Pre-V2.6 CDFs. For Pre-V2.6, it is 0x0000FFFF, repeated from the first number.
The magic numbers for V2.7 are identical to V2.6.

Release

Encoding

Flags

rfuA

rfuB

Increment

rfuD

rfuE

Copyright

The version of the CDF distribution (library) that created this CDF. CDF distributions are
identified with four values: version, release, increment, and sub-increment. For example,
CDF V2.5.8ais CDF version 2, release 5, and increment 8, sub-increment ‘a’. Note that the
sub-increment is not stored in a CDF.

Signed 4-byte integer, big-endian byte ordering.
The release of the CDF distribution that created this CDF. See the Version field above.

Signed 4-byte integer, big-endian byte ordering.
The data encoding for attribute entry and variable values. Section 5.3 describes the
supported data encodings and their corresponding internal values.

Signed 4-byte integer, big-endian byte ordering.
Boolean flags, one per bit, describing some aspect of the CDF. Bit numbering is described in
Chapter 5. The meaning of each bit is as follows...

0 The majority of variable values within a variable record. Variable records are
described in Chapter 4. Set indicates row-majority. Clear indicates column-
majority.

1 The file format of the CDF. Set indicates single-file. Clear indicates multi-
file.

2 The checksum of the CDF. Set indicates a checksum method is used.

3 The MDS5 checksum method indicator. Set indicates MDS5 method is used for

the checksum. Bit 2 must be set.

4 Reserved for another checksum method. Bit 2 must be set and bit 3 must be
clear .

5-32 Reserved for future use. These bits are always clear .

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.
The increment of the CDF distribution that created this CDF. See the Version field above.
Prior to CDF V2.1 this field was always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to negative one (-1).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to negative one (-1).

Character string, ASCII character set.

The CDF copyright notice.'’ This consists of a string of characters containing one or more
lines of text with each line of text separated by a newline character (0x0A). If the total
number of characters in the copyright is less than the size of this field, a NUL character

' Well, sort of a copyright.

(0x00) will be used to terminate the string. In that case, the characters beyond the NUL-
terminator (up to the size of this field) are undefined. This field may be one of two sizes.
Prior to CDF V2.5, this field consisted of 1945 characters (bytes).!" Since the release of
CDF V2.5 this field has been reduced to 256 characters (bytes).

Field Size Comments

RecordSize 8 bytes

RecordType 4 bytes

GDRoffset 8 bytes

Version 4 bytes

Release 4 bytes

Encoding 4 bytes

Flags 4 bytes

rfuA 4 bytes

rfuB 4 bytes

Increment 4 bytes

rfuD 4 bytes

rfuE 4 bytes

Copyright variable 1945 or 256 bytes in length depending on the CDF distribution that

created/modified the CDF.

Figure 2.4: CDF Descriptor Record (CDR)

2.3 GLOBAL DESCRIPTOR RECORD

All dotCDF files contain a single Global Descriptor Record (GDR) at the file offset contained in the GDRoffset field of
the CDR (described in Section 2.2). The GDR contains general information about the CDF (as does the CDR).

The GDR, shown in Figure 2.5, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this GDR (including this field).

RecordType Signed 4-byte integer, big-endian byte ordering.
The value 2, which identifies this as the GDR.

rVDRhead Signed 8-byte integer, big-endian byte ordering.
The file offset of the first rVariable Descriptor Record (rVDR). The first rVDR contains a
file offset to the next rVDR and so on. An rVDR will exist for each rVariable in the CDF.
This field will contain 0x0000000000000000 if the CDF contains no rVariables. Beginning
with CDF V2.1 the last r'VDR will contain a file offset of 0x0000000000000000 for the file
offset of the next rVDR (to indicate the end of the rVDRs). Prior to CDF V2.1 the “next
VDR file offset in the last rVDR is undefined. rVDRs are described in Section 2.6.

zVDRhead Signed 8-byte integer, big-endian byte ordering.
The file offset of the first zVariable Descriptor Record (zVDR). The first zZVDR contains a
file offset to the next zZVDR and so on. A zVDR will exist for each zVariable in the CDF.
Because zVariables were not supported by CDF until CDF V2.2, prior to CDF V2.2 this
field is undefined. Beginning with CDF V2.2 this field will contain either a file offset to the

" Much of which was space reserved for future use. That future use never occurred.

ADRhead

eof

NrVars

NumAttr

rMaxRec

rNumDims

NzVars

UIRhead

rfuC

rfuD

rfuE

rDimSizes

first zZVDR or 0x0000000000000000 if the CDF contains no zVariables. The last zZVDR will
always contain 0x0000000000000000 for the file offset of the next zZVDR (to indicate the
end of the zZVDRs). zVDRs are described in Section 2.6.

Signed 8-byte integer, big-endian byte ordering.

The file offset of the first Attribute Descriptor Record (ADR). The first ADR contains a file
offset to the next ADR and so on. An ADR will exist for each attribute in the CDF. This
field will contain 0x0000000000000000 if the CDF contains no attributes. Beginning with
CDF V2.1 the last ADR will contain a file offset of 0x0000000000000000 for the file offset
of the next ADR (to indicate the end of the ADRs). Prior to CDF V2.1 the “next ADR" file
offset in the last ADR is undefined. ADRs are described in Section 2.4.

Signed 8-byte integer, big-endian byte ordering.

The end-of-file (EOF) position in the dotCDF file. This is the file offset of the byte that is
one beyond the last byte of the last internal record. (This value is also the total number of
bytes used in the dotCDF file.) Prior to CDF V2.1, this field is undefined.

Signed 4-byte integer, big-endian byte ordering.
The number of rVariables in the CDF. This will correspond to the number of rVDRs in the
dotCDF file.

Signed 4-byte integer, big-endian byte ordering.
The number of attributes in the CDF. This will correspond to the number of ADRs in the
dotCDF file.

Signed 4-byte integer, big-endian byte ordering.

The maximum rVariable record number in the CDF. Note that variable record numbers are
numbered beginning with zero (0). If no rVariable records exist, this value will be negative
one (-1).

Signed 4-byte integer, big-endian byte ordering.
The number of dimensions for rVariables.

Signed 4-byte integer, big-endian byte ordering.
The number of zVariables in the CDF. This will correspond to the number of zZVDRs in the
dotCDF file. Prior to CDF V2.2 this value will always be zero (0).

Signed 8-byte integer, big-endian byte ordering.

The file offset of the first Unused Internal Record (UIR). The first UIR contains the file
offset of the next UIR and so on. The last UIR contains a file offset of
0x0000000000000000 for the file offset of the next UIR (indicating the end of the UIRs).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to negative one (-1).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to negative one (-1).

Signed 4-byte integers, big-endian byte ordering within each.
Zero or more contiguous rVariable dimension sizes depending on the value of the
rNumDims field described above.

Field Size Comments

RecordSize 8 bytes

RecordType 4 bytes

rVDRhead 8 bytes

zVDRhead 8 bytes

ADRhead 8 bytes

eof 8 bytes

NrVars 4 bytes

NumAttr 4 bytes

rMaxRec 4 bytes

rNumDims 4 bytes

NzVars 4 bytes

UIRhead 8 bytes

rfuC 4 bytes

rfuD 4 bytes

rfuE 4 bytes

rDimSizes variable Size depends on rNumDims field. If zero rVariable dimensions, this

field will not be present.

Figure 2.5: Global Descriptor Record (GDR)

2.4 Attribute Descriptor Record

An Attribute Descriptor Record (ADR) contains a description of an attribute in a CDF. There will be one ADR per
attribute. The ADRhead field of the GDR contains the file offset of the first ADR.

Each ADR, as shown in Figure 2.6, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this ADR (including this field).

RecordType Signed 4-byte integer, big-endian byte ordering.
The value 4, which identifies this as an ADR.

ADRnext Signed 8-byte integer, big-endian byte ordering.
The file offset of the next ADR. Beginning with CDF V2.1 the last ADR will contain a file
offset of 0x0000000000000000 in this field (to indicate the end of the ADRs). Prior to CDF
V2.1 this file offset is undefined in the last ADR.

AgrEDRhead Signed 8-byte integer, big-endian byte ordering.
The file offset of the first Attribute g/rEntry Descriptor Record (AgrEDR) for this attribute.
The first AgrEDR contains a file offset to the next AgrEDR and so on. An AgrEDR will
exist for each g/rEntry for this attribute. This field will contain 0x0000000000000000 if the
attribute has no g/rEntries. Beginning with CDF V2.1 the last AgrEDR will contain a file
offset of 0x0000000000000000 for the file offset of the next AgrEDR (to indicate the end of
the AgrEDRs). Prior to CDF V2.1 the “next AgrEDR" file offset in the last AgrEDR is
undefined.

Note that the term g/rEntry is used to refer to an entry that may be either a gEntry or an
rEntry. The type of entry described by an AgrEDR depends on the scope of the
corresponding attribute. AgrEDRs of a global-scoped attribute describe gEntries. AgrEDRs
of a variable-scoped attribute describe rEntries.

10

Scope

Num

NgrEntries

MAXgrEntry

rfuA

AzEDRhead

NzEntries

MAXzEntry

rfuE

Name

Signed 4-byte integer, big-endian byte ordering.
The intended scope of this attribute. The following internal values are possible...

1 Global scope.
2 Variable scope.
3 Global scope assumed.
4 Variable scope assumed.
Note that assumed scopes only exist prior to CDF V2.5.

Signed 4-byte integer, big-endian byte ordering.
This attribute's number. Attributes are numbered beginning with zero (0).

Signed 4-byte integer, big-endian byte ordering.
The number of g/rEntries for this attribute.

Signed 4-byte integer, big-endian byte ordering.
The maximum numbered g/rEntry for this attribute. g/rEntries are numbered beginning
with zero (0). If there are no g/rEntries, this field will contain negative one (-1).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future used. Always set to zero (0).

Signed 8-byte integer, big-endian byte ordering.

The file offset of the first Attribute zEntry Descriptor Record (AzEDR) for this attribute.
The first AZEDR contains a file offset to the next AZEDR and so on. An AzEDR will exist
for each zEntry for this attribute. This field will contain 0x0000000000000000 if this
attribute has no zEntries. The last AZEDR will contain a file offset of
0x0000000000000000 for the file offset of the next AZEDR (to indicate the end of the
AzEDRs).

Signed 4-byte integer, big-endian byte ordering.
The number of zEntries for this attribute. Prior to CDF V2.2 this field will always contain a
value of zero (0).

Signed 4-byte integer, big-endian byte ordering.

The maximum numbered zEntry for this attribute. zEntries are numbered
beginning with zero (0). Prior to CDF V2.2 this field will always contain
a value of negative one (-1).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to negative one (-1).

Character string, ASCII character set.

The name of this attribute. This field is always 256 bytes in length. If the
number of characters in the name is less than 256, a NUL character (0x00)
will be used to terminate the string. In that case, the characters beyond
the NUL-terminator (up to the size of this field) are undefined.

11

Field Size Comments
RecordSize 8 bytes

RecordType 4 bytes

ADRnext 8 bytes

AgrEDRhead 8 bytes

Scope 4 bytes

Num 4 bytes

NgrEntries 4 bytes

MAXgrEntry 4 bytes

rfuA 4 bytes

AzEDRhead 8 bytes

NzEntries 4 bytes

MAXzEntry 4 bytes

rfuE 4 bytes

Name 256 bytes Was 64 bytes in earlier V2.*

Figure 2.6: Attribute Descriptor Record (ADR)

2.5 Attribute Entry Descriptor Record

An Attribute Entry Descriptor Record (AEDR) contains a description of an attribute entry. There are two types of
AEDRs: AgrEDRs describing g/rEntries and AZEDRs describing zEntries.'” The AgrEDRhead field of an ADR
contains the file offset of the first AGrEDR for the corresponding attribute. Likewise, the AzZEDRhead field of an ADR
contains the file offset of the first AZEDR. The linked lists of AEDRs starting at AgrEDRhead and AzEDRhead will
contain only AEDRs of that type - AgrEDRs or AzZEDRs, respectively.

Note that the term g/rEntry is used to refer to an entry that may be either a gEntry or an rEntry. The type of entry
described by an AgrEDR depends on the scope of the corresponding attribute. AgrEDRs of a global-scoped attribute
describe gEntries. AgrEDRs of a variable-scoped attribute describe rEntries. The scope of an attribute is stored in the
Scope field of the corresponding ADR.

Each AEDR, as shown in Figure 2.7, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this AEDR (including this field).

RecordType Signed 4-byte integer, big-endian byte ordering.
Either the value 5 which identifies this as an AgrEDR or the value 9 if
an AzEDR. Because zEntries were not supported until CDF V2.2, prior to
CDF V2.2 AzEDRs will not occur in a dotCDF file.

AEDRnext Signed 8-byte integer, big-endian byte ordering.
The file offset of the next AEDR. Beginning with CDF V2.1 the last AEDR
will contain a file offset of 0x0000000000000000 in this field (to indicate the end of
the AEDRs).

AttrNum Signed 4-byte integer, big-endian byte ordering.

2 Because the only difference between AgrEDRs and AzEDRs is the value of the RecordType field, they will be
referred to as AEDRs throughout this document.

12

DataType

Num

NumElems

rfuA

rfuB

rfuC

rfuD

rfuE

Value

The attribute number to which this entry corresponds. Attributes are numbered beginning
with zero (0).

Signed 4-byte integer, big-endian byte ordering.
The data type of this entry. The possible data type internal values are described in Section
5.3.

Signed 4-byte integer, big-endian byte ordering.
This entry's number: an entry number in a global attribute, or the variable number for an
rVariable or zVariable in a variable attribute . Entries are numbered beginning with zero

(0).

Signed 4-byte integer, big-endian byte ordering.

The number of elements of the data type (specified by the DataType field)

for this entry. For character type, i.e., CDF_CHAR or CDF_UCHAR, it’s the length of the
string. For numeric type, it’s the number of items, which is 1 for most cases. However, it can
be multiple items.

Signed 4-byte integer, big-endian byte ordering.
Reserved for future used. Always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future used. Always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future used. Always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future used. Always set to negative one (-1).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future used. Always set to negative one (-1).

This entry's value. This consists of the number of elements (specified by the NumElems
field) of the data type (specified by the DataType field). This can be thought of as a 1-
dimensional array of values (stored contiguously). The size of this field is the product of the
number of elements and the size in bytes of each element. The encoding of the elements
depends on the data encoding of the CDF (which is contained in the Encoding field of the
CDR). The possible encodings are described in Section 5.3.

13

Field Size Comments
RecordSize 8 bytes

RecordType 4 bytes

AEDRnext 8 bytes

AttrNum 4 bytes

DataType 4 bytes

Num 4 bytes

NumElems 4 bytes

rfuA 4 bytes

rfuB 4 bytes

rfuC 4 bytes

rfuD 4 bytes

rfuE 4 bytes

Value Variable Size depends on the DataType and NumElems fields.

Figure 2.7: Attribute Entry Descriptor Record (AEDR)

2.6 Variable Descriptor Record

A Variable Descriptor Record (VDR) contains a description of a variable in a CDF. There are two types of VDRs:
rVDRs describing rVariables and zZVDRs describing zVariables."> The rVDRhead field of the GDR contains the file
offset of the first rVDR. Likewise, the zZVDRhead field of the GDR contains the file offset of the first zZVDR. The
linked lists of VDRs starting at r'VDRhead and zZVDRhead will contain only VDRs of that type - rVDRs or zVDRs,
respectively. If this variable is compressed, a pointer to a Compressed Parameters Record (CPR) is set in the

CPRorSPRoffset field.

Each VDR, as shown in Figure 2.8, contains the following contiguous fields...'*

RecordSize

RecordType

VDRnext

DataType

MaxRec

VXRhead

Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this VDR (including this field).

Signed 4-byte integer, big-endian byte ordering.
Either the value 3, which identifies this as an rVDR or the value 8 if a zZVDR.

Signed 8-byte integer, big-endian byte ordering.
The file offset of the next VDR.

Signed 4-byte integer, big-endian byte ordering.
The data type of this entry. The possible data type internal values are described in Section
5.3.

Signed 4-byte integer, big-endian byte ordering.

The maximum record number written to this variable. Variable records are numbered
beginning at zero (0). If no records have been written to this variable, this field will contain
negative one (-1).

Signed 8-byte integer, big-endian byte ordering.

" The term VDR is used when something applies to both rVDRs and zVDRs. The terms rVDR and zVDR will be used
when a distinction must be made.
'* With the exceptions for rVariables being noted.

14

VXRtail

Flags

sRecords

rfuB

rfuC

rfuF

NumElems

The file offset of the first Variable Index Record (VXR). VXRs are used in single-file CDFs
to store the locations of Variable Value Records (VVRs). VVRs are used to store variable
records in single-file CDFs. VXRs are described in Section 2.7 and VVRs are described in
Section 2.8. The first VXR contains the file offset of the next VXR and so on. The last
VXR contains a file offset of 0x00000000 for the file offset of the next VXR (to indicate the
end of the VXRs). In single-file CDFs, if no records have been written to this variable, this
field will contain a file offset of 0x0000000000000000.

For multi-file CDFs variable records are stored in separate files and this field will always
contain a file offset of 0x00000000. The variable files of a multi-file CDF are described in
Chapter 3.

Signed 8-byte integer, big-endian byte ordering.
The file offset of the last VXR. See the VXRhead field above for a description of VXRs.

Signed 4-byte integer, big-endian byte ordering.
Boolean flags, one per bit, describing some aspect of this variable. Bit numbering is
described in Chapter 5. The meaning of each bit is as follows...

0 The record variance of this variable. Set indicates a TRUE record variance.
Clear indicates a FALSE record variance.

1 Whether or not a pad value is specified for this variable. Set indicates that a
pad value has been specified. Clear indicates that a pad value has not been
specified. The PadValue field described below is only present if a pad value
has been specified.

2 Whether or not a compression method might be applied to this variable data.
Set indicates that a compression is chosen by the user and the data might be
compressed, depending on the data size and content. If the compressed data
becomes larger than its uncompressed data, no compression is applied and the
data are stored as uncompressed, even the compression bit is set. The
compressed data is stored in Compressed Variable Value Record (CVVR)
while uncompressed data go into Variable Value Record (VVR). Clear
indicates that a compression will not be used. The CPRorSPRoffset field
described below provides the offset of the Compressed Parameters Record if
this compression bit is set and the compression used.

3-31 Reserved for future use. These bits are always clear.
Signed 4-byte integer, big-endian byte ordering.
Type of sparse records: no sparserecords, padded sparserecords (using the default/defined

pad value), or previous sparserecords (using the last written value).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to negative one (-1).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to negative one (-1).

Signed 4-byte integer, big-endian byte ordering.

The number of elements of the data type (specified by the DataType field)
for this variable at each value.

15

Num

CPRorSPRoffset

BlockingFactor

Name

zNumDims

zDimSizes

DimVarys

PadValue

Signed 4-byte integer, big-endian byte ordering.

This variable's number. Variables are numbered beginning with zero (0).
Note that rVariables and zVariables are each numbered beginning with zero
(0) and are considered two separate groups of variables.

Signed 8-byte integer, big-endian byte ordering.

CPR/SPR offset depending on bits set in 'Flags' and compression used. If neither
compression

nor sparse arrays, set to OxXFFFFFFFFFFFFFFFF.

Signed 4-byte integer, big-endian byte ordering.
Blocking factor for this variable.

Character string, ASCII character set.

The name of this variable. This field is always 256 bytes in length. If the
number of characters in the name is less than 256, a NUL character (0x00)
will be used to terminate the string. In that case, the characters beyond
the NUL-terminator (up to the size of this field) are undefined.

Signed 4-byte integer, big-endian byte ordering.
The number of dimensions for this zVariable. This field will not be present if this is an
rVDR (rVariable).

Signed 4-byte integers, big-endian byte ordering within each.
Zero or more contiguous dimension sizes for this zVariable depending on the value of the
zNumDims field. This field will not be present if this is an r'VDR (rVariable).

Signed 4-byte integers, big-endian byte ordering within each.

Zero or more contiguous dimension variances. If this is an rVDR, the number of
dimension variances will correspond to the value of the rNumDims field of the GDR. If this
is a ZVDR, the number of dimension variances will correspond to the value of the
zNumDims field in this ZVDR. A value of negative one (-1) indicates a TRUE dimension
variance and a value of zero (0) indicates a FALSE dimension variance.

The variable's pad value. If bit 1 of the Flags field of this VDR is clear, then a pad value has
not been specified for this variable and this field will not be present. If a pad value has been
specified, the s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>